
© GameDuell GmbH | BED-Con 2015

Zwiebeln statt Schichten

Hexagonale Architektur als Alternative zur Schichten-Architektur

Dirk Ehms, GameDuell GmbH

© GameDuell GmbH | BED-Con 2015

Agenda

1. Layered Architecture

2. Example Application

3. Test Automation

4. Code Review

5. Dependency Management

6. Hexagonal Architecture

7. Onion Architecture

8. Conclusion and Discussion

 2

© GameDuell GmbH | BED-Con 2015

Inventory Pricing Sales

Layered Architecture

3

Domain Logic

Persistence

User Interface

© GameDuell GmbH | BED-Con 2015

Sales

Layered Architecture (2)

4

Inventory Pricing

Domain Logic

Persistence

User Interface

Domain Logic

Persistence

User Interface

Domain Logic

Persistence

User Interface

© GameDuell GmbH | BED-Con 2015

Functional Requirements

1. Read customer records from the database

2. Filter customers who have a specific interest

3. Send a personalized promotion message by
email

5

@

Example Application: Promotion Messenger

© GameDuell GmbH | BED-Con 2015

Non-functional Requirements

1. Application must be easy to change and extend

2. Application must be easy to test

3. Unit tests must be very fast and reliable

4. Domain logic must not depend on low level APIs

5. Domain logic must be clearly separated from
external systems

6

@

Example Application: Promotion Messenger

© GameDuell GmbH | BED-Con 2015

Test Automation Pyramid

8

80 % - Unit Tests

15% - Integration Tests

5% - Acceptance Tests

© GameDuell GmbH | BED-Con 2015

Cost of writing automated tests

9
t

€

Unit Test

Integration Test

Acceptance Test

TDD

1,000

100

10

© GameDuell GmbH | BED-Con 2015

First Approach (KISS)

10

(Keep It Simple, Stupid)

© GameDuell GmbH | BED-Con 2015

public class PromotionService {

 @PersistenceContext
 private EntityManager em;

 @Inject
 private MessageService messageService;

 public void sendPromotions(GameCategory category) {

 List<Customer> customers = em
 .createNamedQuery("findByInterest", Customer.class)
 .setParameter("interest", category)
 .getResultList();

 for (Customer customer: customers) {
 messageService.sendMessage(createMessage(customer));
 }
 }

 Message createMessage(final Customer customer) {
 return new Message() {...};
 }
}

PromotionService Implementation (KISS)

11

© GameDuell GmbH | BED-Con 2015

public class PromotionService {

 @PersistenceContext
 private EntityManager em;

 @Inject
 private MessageService messageService;

 public void sendPromotions(GameCategory category) {
 for (Customer customer: findCustomersByInterest(category)) {
 messageService.sendMessage(createMessage(customer));
 }
 }

 Collection<Customer> findCustomersByInterest(GameCategory interest) {
 return em.createNamedQuery("findByInterest", Customer.class)
 .setParameter("interest", interest)
 .getResultList();
 }

 Message createMessage(final Customer customer) {
 return new Message() {...};
 }
}

PromotionService Implementation (2)

12

© GameDuell GmbH | BED-Con 2015

KISS Approach (Layered Architecture?)

13

© GameDuell GmbH | BED-Con 2015

Layered Architecture Approach

14

© GameDuell GmbH | BED-Con 2015

public class PromotionService {

 @Inject
 private CustomerDAO customerDAO;

 @Inject
 private MessageService messageService;

 public void sendPromotions(GameCategory category) {
 for (Customer customer: customerDAO.findCustomersByInterest(category)) {
 messageService.sendMessage(createMessage(customer));
 }
 }

 Message createMessage(final Customer customer) {
 return new Message() {...};
 }
}

PromotionService (Layered Architecture)

15

© GameDuell GmbH | BED-Con 2015

Dependency Inversion Principle

1. High-level modules should not depend on low-level
modules. Both should depend on abstractions.

2. Abstractions should not depend on details. Details
should depend on abstractions.

16

© GameDuell GmbH | BED-Con 2015

Inversion of Control (IoC)

• Hollywood principle: Don't call us, we'll call you.

17

Inversion of Control

GoF Design Pattern Service Locator Dependency Injection

- Template Method
- Factory Method
- Strategy

- Property/Field injection
- Constructor injection
- Parameter injection
- Interface injection

© GameDuell GmbH | BED-Con 2015

Hexagonal Architecture (aka Port and Adapters)

1. Domain Logic has no external dependencies.

2. Adapters depend on the Domain Logic.

18

Domain Logic

Adapters User Interface Database

Email
Provider

External
Service

© GameDuell GmbH | BED-Con 2015

Ports and Adapters

Ports are entry points, provided by the domain logic
and define a set of functions.

• Primary Port: API of the domain logic

• Secondary Port: interface for a secondary adapter

19

An adapter is a bridge between the application and an
external service. It is assigned to one specific port.

• Primary Adapter: calls the API functions of the domain

• Secondary Adapter: implementation of a secondary
port

© GameDuell GmbH | BED-Con 2015

Adapter (Design Patterns - E. Gamma et al)

20

(Secondary Adapter)
defines the domain-specific
interface that Client uses

collaborates with
objects conforming to
the Target interface

defines an existing
interface that needs
to be adapted

adapts the interface
of Adaptee to the
Target interface

© GameDuell GmbH | BED-Con 2015

Hexagonal Architecture: Adapter Example

21

Target

Client Adaptee

Adapter

© GameDuell GmbH | BED-Con 2015

Hexagonal Architecture Approach

22

© GameDuell GmbH | BED-Con 2015

public class PromotionService {

 @Inject
 private CustomerRepository customerRepo;

 @Inject
 private MessageService messageService;

 public void sendPromotions(GameCategory category) {
 for (Customer customer: customerRepo.findCustomersByInterest(category)) {
 messageService.sendMessage(createMessage(customer));
 }
 }

 Message createMessage(final Customer customer) {
 return new Message() {...};
 }
}

PromotionService (Hexagonal Architecture)

23

© GameDuell GmbH | BED-Con 2015

PromotionServiceTest (Hexagonal Architecture)

24

@RunWith(MockitoJUnitRunner.class)
public class PromotionServiceTest {

 @Mock
 private MessageService messageService;

 @Mock
 private CustomerRepository customerRepository;

 @Test
 public void sendPromotion_NoMatchingCustomers_NothingSent() {

 PromotionService promotionService =
 new PromotionService(messageService, customerRepository);

 promotionService.sendPromotions(GameCategory.CARD_GAME);

 verify(customerRepository, times(1))
 .findCustomersByInterest(GameCategory.CARD_GAME);
 verify(messageService, never()).sendMessage(any(Message.class));
 verifyNoMoreInteractions(customerRepository, messageService);
 }
}

© GameDuell GmbH | BED-Con 2015

Onion Architecture

25

User
Interface

Database

Email
Provider

External
Service

Domain
Model

Application
Core

© GameDuell GmbH | BED-Con 2015

Onion Architecture Approach

26

© GameDuell GmbH | BED-Con 2015

Conclusion

• Favor vertical slices over horizontal
layers

• Avoid dependencies from the domain
layer to low level APIs

• Build in testability from the very
beginning

• Design for replacement instead of reuse

• Use the Hexagonal Architecture
approach for complex domains (DDD)

27

© GameDuell GmbH | BED-Con 2015

Any Questions?

Thank You!

