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Inventory Pricing Sales 

Layered Architecture 
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Sales 

Layered Architecture (2) 
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Functional Requirements 

1. Read customer records from the database 

2. Filter customers who have a specific interest 

3. Send a personalized promotion message by 
email 
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Example Application: Promotion Messenger 
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Non-functional Requirements 

1. Application must be easy to change and extend 

2. Application must be easy to test 

3. Unit tests must be very fast and reliable 

4. Domain logic must not depend on low level APIs 

5. Domain logic must be clearly separated from 
external systems  

 

 

 

 

 

6 

@ 

Example Application: Promotion Messenger 
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Test Automation Pyramid 
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80 % - Unit Tests 

15% - Integration Tests 

5% - Acceptance Tests 
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Cost of writing automated tests 
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t 

€ 

Unit Test 

Integration Test 

Acceptance Test 

TDD 

1,000 

100 
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First Approach (KISS) 
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(Keep It Simple, Stupid) 
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public class PromotionService { 
 
   @PersistenceContext 
   private EntityManager em; 
 
   @Inject 
   private MessageService messageService; 
 
   public void sendPromotions(GameCategory category) { 
 
      List<Customer> customers = em 
            .createNamedQuery("findByInterest", Customer.class) 
            .setParameter("interest", category) 
            .getResultList(); 
 
      for (Customer customer: customers) { 
         messageService.sendMessage(createMessage(customer)); 
      } 
   } 
 
   Message createMessage(final Customer customer) {       
      return new Message() {...};  
   } 
} 

PromotionService Implementation (KISS) 
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public class PromotionService { 
 
   @PersistenceContext 
   private EntityManager em; 
 
   @Inject 
   private MessageService messageService; 
 
   public void sendPromotions(GameCategory category) { 
      for (Customer customer: findCustomersByInterest(category)) { 
         messageService.sendMessage(createMessage(customer)); 
      } 
   } 
 
   Collection<Customer> findCustomersByInterest(GameCategory interest) { 
        return em.createNamedQuery("findByInterest", Customer.class) 
              .setParameter("interest", interest) 
              .getResultList(); 
   } 
    
   Message createMessage(final Customer customer) {       
      return new Message() {...};  
   } 
} 

PromotionService Implementation (2) 
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KISS Approach (Layered Architecture?) 
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Layered Architecture Approach 
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public class PromotionService { 
 
   @Inject 
   private CustomerDAO customerDAO; 
    
   @Inject 
   private MessageService messageService; 
    
   public void sendPromotions(GameCategory category) { 
      for (Customer customer: customerDAO.findCustomersByInterest(category)) { 
         messageService.sendMessage(createMessage(customer)); 
      } 
   } 
 
   Message createMessage(final Customer customer) {       
      return new Message() {...}; 
   } 
} 
 

PromotionService (Layered Architecture) 
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Dependency Inversion Principle 

1. High-level modules should not depend on low-level 
modules. Both should depend on abstractions. 

2. Abstractions should not depend on details. Details 
should depend on abstractions. 
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Inversion of Control (IoC) 

• Hollywood principle: Don't call us, we'll call you. 
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Inversion of Control 

GoF Design Pattern Service Locator Dependency Injection 

- Template Method 
- Factory Method 
- Strategy 

- Property/Field injection 
- Constructor injection 
- Parameter injection 
- Interface injection 
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Hexagonal Architecture (aka Port and Adapters) 
 
1. Domain Logic has no external dependencies. 

2. Adapters depend on the Domain Logic. 
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Domain Logic 

Adapters User Interface Database 

Email 
Provider 

External 
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Ports and Adapters 

Ports are entry points, provided by the domain logic 
and define a set of functions. 

• Primary Port: API of the domain logic 

• Secondary Port: interface for a secondary adapter 
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An adapter is a bridge between the application and an 
external service. It is assigned to one specific port.  

• Primary Adapter: calls the API functions of the domain 

• Secondary Adapter: implementation of a secondary 
port 
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Adapter (Design Patterns - E. Gamma et al)  
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(Secondary Adapter) 
defines the domain-specific 
interface that Client uses 

collaborates with 
objects conforming to 
the Target interface 

defines an existing 
interface that needs 
to be adapted 

adapts the interface 
of Adaptee to the 
Target interface 
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Hexagonal Architecture: Adapter Example  
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Target 

Client Adaptee 

Adapter 
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Hexagonal Architecture Approach 
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public class PromotionService { 
 
   @Inject 
   private CustomerRepository customerRepo; 
    
   @Inject 
   private MessageService messageService; 
    
   public void sendPromotions(GameCategory category) { 
      for (Customer customer: customerRepo.findCustomersByInterest(category)) { 
         messageService.sendMessage(createMessage(customer)); 
      } 
   } 
 
   Message createMessage(final Customer customer) {       
      return new Message() {...}; 
   } 
} 
 

PromotionService (Hexagonal Architecture) 
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PromotionServiceTest (Hexagonal Architecture) 
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@RunWith(MockitoJUnitRunner.class) 
public class PromotionServiceTest { 
 
   @Mock 
   private MessageService messageService; 
 
   @Mock 
   private CustomerRepository customerRepository; 
    
   @Test 
   public void sendPromotion_NoMatchingCustomers_NothingSent() { 
 
      PromotionService promotionService =  
         new PromotionService(messageService, customerRepository); 
 
      promotionService.sendPromotions(GameCategory.CARD_GAME); 
 
      verify(customerRepository, times(1)) 
         .findCustomersByInterest(GameCategory.CARD_GAME); 
      verify(messageService, never()).sendMessage(any(Message.class)); 
      verifyNoMoreInteractions(customerRepository, messageService); 
   } 
} 
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Onion Architecture 
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Onion Architecture Approach 
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Conclusion 

• Favor vertical slices over horizontal 
layers 

• Avoid dependencies from the domain 
layer to low level APIs 

• Build in testability from the very 
beginning 

• Design for replacement instead of reuse 

• Use the Hexagonal Architecture 
approach for complex domains (DDD) 
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Any Questions? 

Thank You! 


